2022 Annual Drinking Water Quality Report

(Consumer Confidence Report)

WEST JACKSONVILLE WSC

Phone Number: 903-586-7063

Required Information

It is a Texas Commission on Environmental Quality (TCEQ) requirement to provide this information. You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at (800) 426-4791.

Public Participation Opportunities

Water Board Meeting are held every 3rd Tuesday of each month in the Water Office on CR 3419 at 7:00 PM. To learn about future meetings (concerning your drinking water), please call us at 903-586-7063. Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre este informe en español, favor de llamar al tel. 903-586-7063 para hablar con una persona bilingüe en español.

Our Drinking Water is Regulated

This report is a summary of the quality of the water we provide our customers. The analysis was made by using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. We hope this information helps you become more knowledgeable about what's in your drinking water.

Source of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Where do we get our drinking water?

Our drinking water source is ground water from two wells located in the Carrizo-Wilcox aquifer. The TCEQ completed an assessment of your source water and results indicate that some of your sources are susceptible to certain contaminants.

Abbreviations

<u>NA:</u> ND:	million fibers per liter (a measure of asbestos not applicable not detectable millirems per year (a measure of radiation absorbed by the hodt)	<u>ppm:</u>	7,350 gallons of water parts per trillion, or nanograms per liter (ng/L)
	body) nephelometric turbidity units (a measure of turbidity) picocuries per liter (a measure of radioactivity) micrograms per liter or parts per billion – or one ounce in	<u>ppq:</u> <u>Treat</u>	parts per quadrillion, or pictograms per liter (pg/L) ment Technique or TI: A required process intended to reduce the level of a contaminant in drinking water

Definitions

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

<u>Maximum Contaminant Level (MCL)</u>: The highest permissible level of a contaminant in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why and E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Water Quality Data Table

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table.

,			Detected	Range							
	MCLG or	MCL, TT, or	In Your			Sample					
Contaminants	MRDLG	-	Water	Low	High		Violation	Typical Source			
Disinfectants & Disinfection By-Products											
(There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants)											
Chlorine (as Cl2) (ppm)	4	4	1.41	1.0	1.9	2022	No	Water additive used to control microbes			
Haloacetic Acids (HAA5) (ppb)	NA	60	3.8	3.8	3.8	2022	No	By-product of drinking water chlorination			
TTHMs [Total Trihalomethanes] (ppb)	NA	80	12.5	12.2	12.7	2022	No	By-product of drinking water disinfection			
Inorganic Contaminants					-						
Antimony	0.006	0.006	ND	ND	ND	2022	No	Discharge from petroleum refineries; fire retardants, ceramics, electronics, solder			
Arsenic (ppm)	0	0.010	ND	ND	ND	2022	No	Erosion of natural deposits			
Asbestos (MFL)	0.197	0.197	ND	ND	ND	2021	No	Decay of asbestos cement water mains; Erosion of natural deposits			
Barium (ppm)	2	2	0.03	0.03	0.03	2022	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits			
Beryllium (ppb)	4	4	ND	ND	ND	2022	No	Discharge from metal refineries and coal- burning factories; Discharge from electrical, aerospace, and defense industries			
Cadmium (ppb)	5	5	ND	ND	ND	2022	No	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; Runoff from waste batteries and paints			
Chromium (ppb)	100	100	.0029	.0029	.0029	2022	No	Discharge from steel and pulp mills; Erosion of natural deposits			
Copper - source water (ppm)	1.3	1.3	.0096	.0096	.0096	2022	No	Corrosion of household plumbing systems; Erosion of natural deposits			
Fluoride (ppm)	4	4	0.123	0.122	0.123	2021	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories			
Mercury [inorganic](ppb)	2	2	.0002	.0002	.0002	2022	No	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland			
Nitrate [measured as Nitrogen] (ppm)	10	10	.0458	.0458	.0458	2022	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits			
Nitrite [measured as Nitrogen] (ppm)	1	1	.0243	.0243	.0243	2022	No	Run-off from fertilizer; Leaching from septic tanks. Erosion of natural deposits.			
Selenium (ppb)	50	50	ND	ND	ND	2022	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines			
Thalium (ppb)	.5	.5	ND	ND	ND	2022	No	Discharge from electronics, glass & leaching from ore-processing sites.			

	Marc	MO	Detected	Range				
	MCLG or	MCL, TT, or	In Your			Sample		
Contaminants Microbiological Contamina	MRDLG	MRDL	Water	Low	High	Date	Violation	Typical Source
Total Coliform (RTCR) (%						[
positive samples/month)	NA	TT	NA	NA	NA	2022	No	Naturally present in the environment
Radioactive Contaminants	1				[
Radium (combined 226/228) (pCi/L)	0	5	ND	ND	ND	2018	No	Erosion of natural deposits
	MCLG	MCL,	Detected In	Rai	nge			
Contaminants	or MRDLG	TT, or MRDL	Your Water	Low	High	Sample Date	Violation	Typical Source
	Synth	etic Or	ganic Conta	mina	nts inc	luding Pe	esticides a	nd Herbicides
2,4-D (ppb)	70	70	ND	ND	ND	2021	No	Runoff from herbicide used on row crops
2,3,5-TP [Silvez](ppb)	50	50	ND	ND	ND	2021	No	Residue of banned herbicide
Dalapon (ppb)	200	200	ND	ND	ND	2021	No	Runoff from herbicide used on rights of way
Dinoseb (ppb)	7	7	ND	ND	ND	2021	No	Runoff from herbicide used on soybeans and vegetables
Oxamyl [Vydate] (ppb)	200	200	ND	ND	ND	2021	No	Runoff/leaching from insecticides used on apples, potatoes, and tomatoes
Contaminants	MCLG or MRDLG	MCL, TT, or MRDL	Detected In Your Water		nge High	Sample Date	Violation	Typical Source
						Compou		-) F
Benzene (ppb)	5	5	ND	ND	ND	2022	No	Discharge from factories; Leaching from gas storage tanks and landfills
Carbon Tetrachloride (ppb)	5	5	ND	ND	ND	2022	No	Discharge from chemical plants and other industrial activities
Chlorobenzene (ppb)	100	100	ND	ND	ND	2022	No	Discharge from chemical and agricultural chemical factories
o-Dichlorobenzene (ppb)	600	600	ND	ND	ND	2022	No	Discharge from industrial chemical factories
1,1-Dichloroethane (ppb)	5	5	ND	ND	ND	2022	No	Discharge from industrial chemical factories
1,1-Dichlorethylene (ppb)	7	7	ND	ND	ND	2022	No	Discharge from industrial chemical factories
cis-1,2-Dichloroethylene (ppb)	70	70	ND	ND	ND	2022	No	Discharge from industrial chemical factories
trans-1,2-Dichloroethylene (ppb)	100	100	ND	ND	ND	2022	No	Discharge from industrial chemical factories
Dichloromethane (ppb)	5	5	ND	ND	ND	2022	No	Discharge from pharmaceutical and chemical factories
1,2-Dchloropropane (ppb)	5	5	ND	ND	ND	2022	No	Discharge from industrial and chemical factories
Ethylbenzene (ppb)	700	700	ND	ND	ND	2022	No	Discharge from petroleum refineries
Styrene (ppb)	100	100	ND	ND	ND	2022	No	Discharge from rubber and plastic factories; Leaching from landfills
Tetrachloroethylene (ppb)	5	5	ND	ND	ND	2022	No	Discharge from factories and dry cleaners
1,2,4-Trichlorobenzene (ppb)	70	70	ND	ND	ND	2022	No	Discharge from textile factories
1,1,1-Trichloroethane (ppb)	200	200	ND	ND	ND	2022	No	Discharge from metal degreasing sites and other factories

				Detected		Range				
Contaminants	MCLO or MRDI	ТТ	CL, [, or RDL	Yo	n our iter	Low	High	Sample Date	Violation	Typical Source
1,1,2-Trichloroethane (ppb)	3		3		D	ND	ND	2022	No	Discharge from industrial chemical factories
Trichloroethylene (ppb)	5	5		ND		ND	ND	2022	No	Discharge rom metal degreasing sites and other factories
Toluene (ppm)	1	1		ND		ND	ND	2022	No	Discharge from petroleum factories
Vinyl Chloride (ppb)	2	2 2		ND		ND	ND	2022	No	Leaching from PVC piping; discharge from plastics factories
Xylenes (ppm)	10	10		ND		ND	ND	2022	No	Discharge from petroleum factories; Discharge from chemics factories
Contaminants		MCLG or MRDL	T	ICL, T, or RDL	Dete Ir You Wat	ı ur	Range	Sample Date	Violation	Typical Source
Inorganic Contaminants										
Copper - action level at consumer taps (ppm)		0.16		1.3	0.1	6	2020	0	No	Corrosion of household plumbing systems; Erosion of natural deposits
Inorganic Contaminants										
Lead - action level at consum taps (ppb)	ier	0		15	0		2020	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

Unregulated Contaminants

Bromochloroacetic, Bromodichloromethane, Chloroform, Dibromochloromethane, Dichloroacetic Acid, and Trichloroacetic Acid are disinfection byproducts. There is no maximum contaminant level for these chemicals at the entry point to distribution.

Contaminants	MCLG or MRDLG	MCL, TT, or MRDL	Your Water	Violation	Typical Source
Bromochloroacetic (ppb)	NA	NA	1.1-1.2	No	Byproduct of drinking water disinfection
Bromodichloromethane (ppb)	NA	NA	4.01-4.28	No	Byproduct of drinking water disinfection
Chloroform (ppb)	NA	NA	5.08-5.14	No	Byproduct of drinking water disinfection
Dibromochloromethane (ppb)	NA	NA	3.07-3.31	No	Byproduct of drinking water disinfection
Dichloroacetic Acid (ppb)	NA	NA	2.0	No	Byproduct of drinking water disinfection
Trichloroacetic Acid (ppb)	NA	NA	1.8	No	Byproduct of drinking water disinfection

Secondary and Other Constituents

Year	Constituent	Average Level	Minimum Level	Maximum Level	Secondary Limit	Unit of Measure	Source of Constituent
2021	Chloride	43.7	41.7	45.7	300	ppm	Abundant naturally occurring element; used in water purification; byproduct of oil field activity
2021	Sulfate	56.95	55.2	58.7	300	ppm	Naturally occurring, common industrial byproduct; byproduct of oil field activity
2021	Total Alkalinity As CaCO3	120	119	120	NA	ppm	Naturally occurring soluble mineral salts.
2021	TDS-Total Dissolved Solids	280	276	280	500	ppm	Naturally occurring, urban run0off, industrial wastewater and chemicals
2018	Zinc	.011	.011	.011	5	ppm	Moderately abundant naturally occurring element, used in the metal industry

SYSTEM WATER LOSS: In the water loss audit submitted to the Teas Water Development Board for the time period of January thru December 2022, our system lost an estimated <u>35,291,000</u> gallons of water.